
N91-20398

ART-Ada: An Ada-Based Expert System Tool

S. Daniel Lee and Bradley P. Allen

Inference Corporation

550 N. Continental Blvd.

El Segundo, CA 90245

Abstract

The Department of Defense mandate to standardize on

Ada as the language for software systems development

has resulted in increased interest in making expert sys-

tems technology readily available in Ada environments.

NASA's Space Station Freedom is an example of the

large Ada software development projects that will require

expert systems in the 1990's. Another large-scale applica-

tion that can benefit from Ada-based expert system tool

technology is the Pilot's Associate (PA) expert wstem

project for military combat aircraft. This paper

describes ART-Ada, an Aria-based expert system tool.

ART-Ada allows applications of a C-based expert system

tool called ART-IM to be deployed in various Ada en-

vironments. ART-Ada is being used to implement

several prototype expert systems for NASA's Space Sta-

tion Freedom Program and the U.S. Air Force.

1. Introduction

The Department of Defense mandate to standardize on

Ada as the language for software systems development

has resulted in increased interest from developers of

large-scale Ada systems in making expert systems tech-

nology readily available in Ada environments. Two ex-

amples of Ada applications that can benefit from the use

of expert systems are monitoring and control systems and

decision support systems. Monitoring and control systems

demand real-time performance, small execution images,

tight integration with other applications, and predictable

demands on processor resources; decision support systems

have somewhat less stringent requirements.

An example project that exhibits the need for both of

these types of systems is NASA's Space Station Freedom.

Monitoring and control systems that will perform fault

detection, isolation and reconfiguration for various on-

board systems are expected to be developed and deployed

on the station either in its initial operating configuration

or as the station evolves; decision support systems that

will provide assistance in activities such as crew-time

scheduling and failure mode analysis are also under con-

sideration. These Systems will be expected to run reliably

on a standard data processor, currently envisioned to be

an 80386-based workstation. The Station is typical of

the large Ada software development projects that will re-

quire expert systems in the 1990's.

Another large-scale application that can benefit from

Ada-based expert system tool technology is the Pilot's

Associate (PA) expert system project for military combat

aircraft [3]. Funded hy the Defense Advanced Research

Projects Agency (DAIlPA) as part of its Strategic Con>

puting Program, the PA project attempts to automate

the cockpit of military combat aircraft using Artificial In-

telligence (AI) techniques. A Lisp-based expert system

tool, ART (Automated Reasoning Tool), was used to im-

plement one of the two prototypes built during Phase

I. An Ada-based expert system tool can provide a migra-

tion path to deploy the prototype on an on-board com-

puter because Ada cross-compilers are readily available to

run Ada programs on most embedded processors used for

avionics.

Inference has been involved with Ada-based expert sys-

tems research since 1986. Initial work centered around a

specification for an Ada-based expert system tool [41. In

1988, the ART-Ada Design Project was initiated to

design and implement an Ada-based expert system

tool [6], [10], [11]. At the end of 1989, ART-Ada was

released to beta sites as ART-Ada 2.0 Beta on the

VAX/VMS and Sun/Unix platforms [7]. In 1990, eight

beta sites, four NASA sites and four Air Force sites, will

be evaluating ART-Ada 2.0 for eight months by develop-

ing expert systems and deploying them in Ada environ-

ments. The objectives of the ART-Ada Design Project

were two fold:

456



1. to determine the feasibility of providing a

hybrid expert system tool such as ART in

Ada, and

2. to develop a strategy for Ada integration and

deployment of such a tool.

Both of these objectives were met successfully when

ART-Ada 2.0 beta was released to the beta sites.

Inference Corporation developed an expert system tool

called ART (Automated Reasoning Tool) that has been

commercially available for several years [5]. ART is writ-

ten in Common Lisp and it supports various reasoning

facilities such as rules, objects, truth maintenance,

hypothetical reasoning and object-oriented programming.

In 1988, Inference introduced another expert system tool

called ART-IM (Automated Reasoning Tool for Infor-

mation Management), which is also commercially

available [8]. ART-IM is written in C and it supports a

major subset of ART's reasoning facilities including rules,

objects, truth maintenance and object-oriented program-

ming. ART-IM supports deployment of applications in C

using a C deployment compiler that converts an applica-

tion into C data structure definitions in the form of ei-

ther C source code or object code. ART-IM's interactive

develo0ment environment includes a graphical user inter-

face that. allows browsing and debugging of the

knowledge base and an integrated editor that offers in-

cremental compilation. ART-IM is available for MVS,

VMS, Unix, MS-DOS, and OS/2 environments.

Our approach in designing an Ada-based expert system

tool was to use the architecture of proven expert system

tools: ART and ART-IM. Both ART and ART-IM have

been successfully used to develop many applications

which are in daily use today [1], [12], [13]. ART-IM was

selected as a baseline system because C is much closer to

Ada. While ART-IM's inference engine was

reimplemented in Ada, ART-IM's front-end (its

parser/analyzer and graphical user interface) was reused

as the ART-Ada development environment. The ART-

IM kernel was enhanced to generate Ada source code that

would be used to initialize Ada data structures equivalent

to ART-IM's internal C data structures, and also to in-

terface with user-written Ada code. This approach allows

the user to take full advantage of the interactive develop-

ment environment developed originally for ART-IM.

Once the development is complete, the application is

automatically converted to Ada source code. It is, then,

compiled and linked with the Ada runtime kernel, which

is an Ada-based inference engine.

2. Overall Architecture

ART-Ada is designed to be used by knowledge en-

gineers who may not be familiar with Ada. With min-

imum knowledge about Ada, they can still develop a

knowledge base in a high-level language whose syntax

most resembles that of Common Lisp. When the

knowledge base is completed, Ada source code can be

generated automatically by simply "pressing a button".

When this automatically generated Ada code is com-

piled and linked with the Ada library of the ART-Ada

runtime kernel, an Ada executable image is produced.

ART-Ada also provides extensive capabilities for Ada in-

tegration so that the knowledge base can be embedded in

an Ada environment. It would be best if the knowledge

engineer developing the knowledge base works with an

Ada programmer who serves as a system integrator.

ART-Ada would be most useful for those who must

deploy in Ada environments (because of the Ada man-

date) expert system applications already developed using

tools that do not support Ada deployment.

The overall architecture of ART-Ada is depicted in

figure 2-1. The knowledge base is developed and

debugged using an interactive user interface that sup-

ports three main features; a command loop similar to the

Lisp eval loop, a graphical user interface for knowledge

base browsing and debugging, and an integrated editor

for incremental compilation of the knowledge base. Any

user-written Ada code can be integrated into the

knowledge base by either calling it from a rule or invok-

ing it as a method for object-oriented programming.

Once the knowledge base is fully debugged, it can be

automatically converted into an Ada package for deploy-

ment. The ART-Ada runtime kernel is an Ada library,

which is in essence an Ada-based inference engine. An

Ada executable image is produced when the machine-

generated Ada code and any user-written Ada code, if

any, are compiled and linked with the Ada library.

3. Knowledge Representation

ART-Ada's key feature is the integration of rule-based

representation and object-based (frame-based) represen-

tation. It supports three different programming

methodologies:

• Rule-based Programming -- Rules opportunis-

tically react to changes in the surrounding

database. Rules can fire (execute) in an order

k
457



Ada

Packages

_ / Application / Executable

ART-Ada Ada / Ada Application
Development Compilation
Environment Package System

Application _ /
Knowledge

Base

ART-Ada
Runtime

Kernel

Figure 2-1: Overall Architecture of ART-Ada

based largely o]1 the dynamic ordering of

those changes. Rules cannot call other rules,

and hence must communicate indirectly by

making changes to the database which will, in

turn, stimulate other rules.

Object-Oriented Programming-- The fun-

damental unit of ART-Ada's object-oriented

programming is the object, represented by a

schema. Cont,-ol is managed by sending

messages to objects (schemas). The object

reacts to the message by searching within it-

self for a method appropriate to that message.

If an objeet does not have a method for tile

received message, it searches to see if it has

inherited any appropriate methods from its

parents. Once a method has been found, the

object carries out the actions associated with

the method.

Procedural Progralnming -- ART-Ada's

procedural language supports function calling,

iteration (for, while) and conditionals (if, and,

not). There are more than two hundred func-

tions available in the procedural language.

ART-Ada's rule system is based on ),he optimized Rete

pattern-matching algorithm [2]. Unlike OPS5, ART-Ada

rules can pattern-match on objects called schemas as well

as on lists called facts. Faat._ are similar to Lisp lists and

do not support any inheritance. Schemas are similar to

CLOS (Common Lisp Object System) objects; they are

organized as attribute-value pairs and support

inheritance through the is-a (subclass) and instance-of

(member) relations. In the following example, mammal

and dog are schemas while (animal-found dog) is a fact.

Mammal is a class and dog is a subclass of the class

mammal; they are linked with an is-a link. On the

other hand, fido is a member of classes dog and

mammal; it is linked to the class dog through an

instance-of link. The significance of the relations is-a

and instance-of is that the attribute-value pairs gets in-

herited either from a class to a subclass or from a class to

a member. In the following example, fido will inherit at-

tributes (eats meat), (socialization pack), (locomotion-

mechanism run), and (instance-of mammal) from dog; it

will also inherit (feeds-offspring milk) and (skin-covering

hair) from mammals. As shown in the rule

determine-if-dog that matches on both a schema pattern

(schema ?animal (...)) and a fact pattern (classify-animal

?animal), the ART-Ada rules can match with schemas as

well as facts. In order to optimize performance, ART-

Ada uses two separate pattern matehers: one for

schemas and one for facts.

(defschema mammal

(feeds-offsprlng milk)
(skin-covering hair))

(defschema dog
(ls-a mammal)
(e/ts meat)

(socialization pack)
(locomotion-mechanlsm run))

(defschema fldo

(instance-of dog)
(owned-by John))

458



(defrule determlne-lf-dog

"Determine if subject is a dog."
(classify-anlmal ?animal)
(schema ?animal

(is-a mammal)

(socialization pack)
(eats meat))

=>

(assert (schema ?animal

(is-a dog)))
(assert (animal-found dog)))

When an expert system deduces a conclusion (e.g. to

diagnose faults in an electric circuit), it is often required

to answer a question like "why?". This capability is

called explanation. In ART-Ada, an explanation

capability can be implemented using the justification

system. When enabled, the justification system can

provide a listing of the rules and data objects which were

responsible for creating a particular fact or schema. By

embedding features of the justification system in an ap-

plication, the expert system can trace the steps leading to

a particular conclusion. The justification system is also a

powerful debugging tool when used during the develop-

men_ of an expert system. Should an application exhibit

unexpected behavior during development, the program-

met can exploit the features of the justification system to

discover the source of the problem.

In the following example, if (classify-animal my-

kangaroo) matches with a LHS pattern (classify-animal

?animal) where ?animal is a variable, and the rule fires to

assert (schema my-kangaroo (is-a marsupial)), then we

say that (classify-animal my-kangaroo) justifies (schema

my-kangaroo (is-a marsupial)). In ART-Ada, consistency

of the knowledge base is maintained by a justification-

based truth maintenance system (JTMS) called Logical

Dependencies. If logical is wrapped around (classify-

animal ?animal), (schema my-kangaroo (is-a marsupial))

is not only justified by but also logically dependent on

(classify-animal my-kangaroo); when (classify-animal my-

kangaroo) is retracted from the knowledge base, (schema

my-kangaroo (is-a marsupial)) is also retracted, and

therefore consistency of the knowledge base is maintained

automatically.

(defrule determlne-lf-marsuplal

"Determine if subject is marsupial."
(logical (classlfy-animal ?animal))
(schema ?animal

(is-a mammal)

(carries=offspring pouch))
=>

(assert (schema ?animal

(is-a marsupial))))

In ART-Ada, object-oriented programming can be used

with rule-based programming to take advantage of both

paradigms. In the following example, the rule

print-out-object is used to sent the print message to all

objects that are instances of object. When an object

my-triangle matches with the rule print-out-object, an in-

herited method print-triangle will be invoked. Methods

can be defined either in ART-Ada's procedural language

using de f-art-fun which is similar to the Lisp defun, or

directly in Ada using de f-user-fun which will be dis-

cussed later.

;;; define objects

(defschema object

(print print-unknown))

(defschema circle

(is-a object)
(print prlnt-clrcle))

(defschema triangle
(is-a object)
(print prlnt-triangle))

(defschema my-trlangle
(instance-of triangle)

(position (1 2)))

;;; define a rule that sends a print message.

(defrule prlnt-out-obJect
(schema ?object

(instance-of object)

(position (?x ?y)))
=>

(send print ?object ?x ?y))

4. Knowledge Base Debugging

ART-Ada offers three main features in the user inter-

face called the Studio:*

• a command loop,

• a graphical user interface, and

• an integrated editor.

ART-Ada's command loop is similar to the Lisp eval

loop, in which user input is interpreted. More than two

hundred functions are available in the command loop.

Even Ada functions can be added to the command loop

and called from the command loop.

*The Sun version supports only a command loop interface while

the VAX/VMS version supports all three.

459



The Studio's interactive, menu-based graphical user in-

terface provides immediate access to the knowledge base,

and lets you monitor any aspect of program development

or execution via an integrated network of menus and

windows.

The Studio also provides a tightly integrated interface

to the GNU Emacs full-screen editor. This interface

facilitates the ART-Ada program devdopment process by

providing a number of powerful capabilities, such as in-

cremental compilation of ART-Ada code.

The ART-Ada Studio can be used to do the following:

• Develop and execute an ART-Ada application.

Browse the knowledge base -- to examine

declarative (facts/schema.s) knowledge,

procedural (rules) knowledge, and runtime

state, such as matches and activations.

Debug the knowledge base -- by setting break-

points in the programs and tracing their ex-

ecution.

Develop applications incrementally -- by edit-

ing the knowledge base to change facts or

rules, or to modify program interactively.

• Generate Ada source code.

The ART-Ada/VMS Studio is based on DECwindows.

The Studio is also implemented using other user interface

standards (e.g. PM, OSF/Motif, ISPF) on other plat-
forms.

5. Ada Integration

A major feature of ART-Ada is its ability to integrate

expert systems technology with Ada. ART-Ada supports

three types of Ada integration:

• Ada call-out refers to an ability to call Ada

subprograms (procedures and functions) from

the knowledge base (rules and methods).

• Ada call-in refers to an ability to call ART-

Ad t s public functions fl'om Ada.

Ada call-back is a special case of Ada call-in

and refers to an ability to call ART-Ada's

public functions f,'om an Ada subprogram

called fro,n the knowledge base using Ada
call-out.

Designers of expert systems will want to develop their

own Ada code to provide user and system interfaces for

their applications. There also may be a need to interface

expert systems with other Ada applications (e.g. a signal

processing application). A primary benefit of incorporat-

ing Ada code into the knowledge base is that Ada code

will execute faster than similar code written in the ART-

Ada procedural language. A consistent Ada call-in and

call-out interface is provided for both development and

deployment environments so that user-written Ada code

runs without modification when it is deployed in Ada. In

order to illustrate how an Ada subprogram is called from

the knowledge base, let's consider the following rule:

(defrule distance-calculatlon-rule

"calc distance between airfield and base"

(schem_ ?airfield

(instance-of airfield)

(lat ?latl)

(lon ?ionl))

(schema ?base

(instance-of base)

(lat ?lat2)

(lon ?lon2))

=>

(bind ?distance

;; call an Ada function to calc distance

(calculate-distance ?latl ?lonl

?lat2 ?lon2))

(assert

(distance ?base ?airfield ?distance)))

The function, calculate-distance, can be implemented

either in the ART-Ada procedural language or in Aria,

but the Ada version would run faster. The ART-Ada

construct clef-user-fun specifies the interface between
ART-Ada and Ada. It establishes an ART-Ada function

name which calls out to the corresponding Ada sub-

program, and it provides a description of data being

passed. For example, calculate-distance _.,m be specified
as an Ada function as follows:

(def-user-fun calculate-distance

:args ((latl :float)

(lonl :float)

(lat2 :float)

(lon2 :float))

:returns :float

:compiler :dec-ada)

This de f-user-fun statement specifies that the ART-

Ada function calculate-distance will call out to an Ada

function CALCULATE DISTANCE. There are four ar-

guments of a type floating-point number being passed to

Ada. The return value is also a floating-point number.

It also specifics the default Ada compiler for tim platform

(i.e. DEC Aria). The corresponding Ada code should be

declared in a package called USER aim would look like:

460



-- ART is a public package of ART-Ada.
with ART;

-- USER is a package for user's Ada code.

package USER is

function CALCULATE DISTANCE

(LATI, LONI0 LAT2, LON2 : ART.FLOAT_TYPE)
return ART.FLOAT TYPE;

end USER;

ART-Ada

integer

float

boolean

string

Ada

INTEGER TYPE

FLOAT TYPE

BOOLEAN TYPE

STRING

symbol STRING

art-obj ect ART_ OBJECT

Size

32 Bits

64 Bits

Table 5-1: Data Types for Ada Call-in/Call-out

Ada data types supported for the call-in and call-out

interfaces are: 32 bit integer (INTEGER_TYPE), 64 bit

float (FLOAT_TYPE), boolean (BOOLEAN_TYPE),

string and symbol (STRING), and an abstract data type

for objects in ART-Ada (ART_OBJECT). Table 5-1

summarizes the mapping between ART-Ada and Ada

data types.

6. Ada Code Generation

ART-Ada takes one or more ART-Ada source files as

input and outputs Ada source files that represent a single

Ada package. At any point after ART-Ada source files

are loaded into ART-Ada and the knowledge base is in-

itialized for execution, the Ada code generator may be in-

voked to generate Ada source code. An Ada package

specification generated by ART-Ada for an example ap-

plication called MY EX_'ERT SYSTEM is shown

below:

-- generated automatically by ART-Ada
package MY EXPERT SYSTEM is

-- initialize the application.
procedure INIT;

end MY EXPERT SYSTEM;

A simple Ada main program that initializes and runs

the application MYEXPERTSYSTEM is shown

below. It is the simplest way to run an ART-Ada ap-

plication in an Ada environment. It is possible, however,

to embed it in a large Ada program. ART-Ada's public

Ada packages, ART and SCHEMA, include a full set of

Ada utilities to control and access procedurally the

knowledge base from Ada. In OPS5, for example, it is

hard to access working memory elements procedurally.

In ART-Ada, Ada utilities are provided to access the

knowledge base directly from Ada.

-- This is a maln program written by the user.
-- ART is a public package of ART-Ada.

with ART, MY_EXPERT_SYSTEM;
procedure MAIN is

TOTAL RULES : ART.INTEGER TYPE;

begin
MY EXPERT SYSTEM.INIT; -- initialize

TOTAL RULES := ART.A RUN(-1); -- run it.
end MAIN;

In addition to generating the Ada source code that in-

itializes the knowledge base, a call-out interface module is

generated as u separate procedure; it is a large case state-

ment that contains all Ada subprograms called out to

from ART-Ada. ART-Ada also generates a command file

used to compile all Ada files generated by ART-Ada.

7. Ada Runtime Deployment

The steps needed to deploy an ART-Ada application in

Ada are summarized below:

Develop and debug an application using ART-

Ada's interactive development environment.

If necessary, call out to Ada using the call-

in/call-out interface.

2. Generate Ada code from ART-Ada using the

Ada code generator. If the Ada compiler plat-

form is different from the ART-Ada develop-

ment platform, the generated Ada code can be

moved to the platform on which the Ada

compiler runs as long as the ART-Ada run-

time kernel is available for that platform.

3. Compile the generated Ada code and user-

written Ada code using either a self-targeted

compiler or a cross-compiler into an ap-

propriate Ada library of the ART-Ada run-

time kernel.

4. Create an Ada executable image by linking an

Ada main program.

k
461



5. Deploy the Ada executable image on a host

computer or on a target system.

8. Future Work

According to a recent benchmark, ART-Ada does not

perform as well as ART-IM. While immature Ada com-

pilers also contribute to the poor performance, fundamen-

tal problems of the Ada language itself have been

uncovered [9]. Some examples are:

• dynamic memory management,

• function pointers, and

• bit operators.

Among these, the overhead of dynamic memory

management is the most serious problem. Due to the

dynamic nature of expert systems, it is necessary to al-

locate memory dynamically at runtime in ART-Ada and

ART-IM. The direct use of new and

unchecked dealloeation is the only dynamic memory

management method available in Ada. The problem

with this method is that new incurs a fixed overhead as-

sociated with each call and it is called very frequently to

allocate a relatively small block for an individual data

structure. It results in a performance penalty in size and

the slower execution speed. This is also aggravated by

the poor implementation of new in the Ada compiler.

The existing Ada features, new,

unchecked_deallocation, and unchecked_conversion, are

too restrictive and totally inadequate for a complex sys-

tem that requires efficient memory management. More

flexible features (perhaps in addition to the existing ones)

should be provided. This is particularly important in

embedded system environments that impose a severe

restriction on the memory size.

This issue and others were presented to several mem-

bers of the Ada 9X Project in a meeting held in

Washington, D.C. in March, 1990. We believe that they

should be addressed by the Ada 9X standard. Unfor-

tunately, the revised Ada language based on the Ada 9X

will not be available until 1993 or later, which would be

too late for the Space Station Freedom software develop-
ment schedule.

Our current research effort is focused on improving the

performance of ART-Ada by implementing ART-Ada's

own memory manager using current technology. If it is

not possible to implement it in Ada, we will implement it

in another language (e.g. an assembly language). ART-

Ada has an Ada code generator, which generates Aria

code that relies on new and unchecked deallocation.

The current code generator would have to be redesigned

to be compatible with the new memory manager.

Other Ada language issues such as function pointers, bit

operators and portability and compiler problems encoun-

tered during the development of ART-Ada are discussed

elsewhere [11], [9].

9. Acknowledgments

The authors wish to acknowledge the guidance and sup-

port of Chris Culbert and Bob Savely of NASA Johnson

Space Center, Greg Swietek of NASA Headquarters, and

Captain Mark Gersh of the U.S. Air Force. Mark

Auburn, Don Pilipovich, Mike Stoler and Mark Wright of

Inference Corporation contributed to the project.

References

1. Dzierzanowski, J.M. et. al. The Authorizer's Assis-

tant: A Knowledge-based Credit Authorization Systcm

for American Express. Proceedings of the Conference on

Innovative Applications of Artificial Intelligence, AAAI,

1989.

2. Forgy, C.L. "RETE: A Fast Algorithm for the Many

Pattern / Many Object Pattern Match Problem".

Artificial b_telligence 19 (1982).

3. Hugh, D.A. "Tile Future of Flying". AI Expert 3, 1

(January 1988).

4. Inference Corporation. Ada-ART, Specification for

an Ada-based State-of-the-Art Expert System Construc-

tion Capability. Inference Corporation, August, 1987.

5. Inference Corporation. ART Version 3.2 Reference

Manual. Inference Corporation, 1988.

6. Inference Corporation. ART/Ada Design Project -

Phase I, Final Report. Inference Corporation, March,

1989.

462



7. Inference Corporation. ART-Ada/VMS 2.0 Beta Ref-

erence Manual. Inference Corporation, 1989.

8. Inference Corporation. ART-IM//VMS 2.0 Beta Ref-

erence Manual. Inference Corporation, 1989.

9. Lee, S.D. Toward the Efficient Implementation of

Expert Systems in Ada. Submitted to the TRI-Ada Con-

ference, ACM, 1990.

10. Lee, S.D., Allen, B.P. Deploying Expert Systems in

Ada. Proceedings of the TRI-Ada Conference, ACM,

1989.

11. Lee, S.D., Allen, B.P. ART-Ada Design Project -

Phase II, Final Report. Inference Corporation, February,

1990.

12. Nakashima, Y, Baba, T. OHCS: Hydraulic Circuit

Design Assistant. Proceedings of the Conference on In-

novative Applications of Artificial Intelligence, AAAI,

1989.

13. O'Brien, J. et. al. The Ford Motor Company Direct

Labor Management System. Proceedings of the Con-

ference on Innovative Applications of Artificial Intel-

ligence, AAAI, 1989.

463


